Perturbation Analysis of Hamiltonian Schur and Block-Schur Forms

نویسندگان

  • Mihail Konstantinov
  • Volker Mehrmann
  • Petko Hr. Petkov
چکیده

In this paper we present a complete perturbation analysis for the Hamiltonian Schurform of a Hamiltonian matrix under similarity transformations with unitary symplectic matrices.Both linear asymptotic and non-linear perturbation bounds are presented. The same analysis isalso carried out for two less condensed block-Schur forms. It suggests that the block forms areless sensitive to perturbations. The analysis is based on the technique of splitting operators andLyapunov majorants as well as on a representation of the symplectic unitary group which is convenientfor perturbation analysis of condensed forms. As a corollary a perturbation bound for the stableinvariant subspace of Hamiltonian matrices is obtained. Finally, given an ε-perturbation in the initialHamiltonian matrix, the perturbations in the Hamiltonian Schur form and the unitary symplecticbasis are constructed in the form of power series expansions in ε.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new block method for computing the Hamiltonian Schur form

A generalization of the method of Chu, Liu and Mehrmann [7] for the computation of the Hamiltonian real Schur form is presented. The new method avoids some of the difficulties that may arise when a Hamiltonian matrix has tightly clustered groups of eigenvalues. A detailed analysis of the method is presented and several numerical examples demonstrate the superior behavior of the method.

متن کامل

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils

We discuss the numerical solution of structured generalized eigenvalue problems that arise from linear-quadratic optimal control problems, H∞ optimization, multibody systems, and many other areas of applied mathematics, physics, and chemistry. The classical approach for these problems requires computing invariant and deflating subspaces of matrices and matrix pencils with Hamiltonian and/or ske...

متن کامل

Characterization of finite $p$-groups by the order of their Schur multipliers ($t(G)=7$)

‎Let $G$ be a finite $p$-group of order $p^n$ and‎ ‎$|{mathcal M}(G)|=p^{frac{1}{2}n(n-1)-t(G)}$‎, ‎where ${mathcal M}(G)$‎ ‎is the Schur multiplier of $G$ and $t(G)$ is a nonnegative integer‎. ‎The classification of such groups $G$ is already known for $t(G)leq‎ ‎6$‎. ‎This paper extends the classification to $t(G)=7$.

متن کامل

Condensed Forms for Skew-Hamiltonian/Hamiltonian Pencils

Abstract In this paper we consider real or complex skew-Hamiltonian/Hamiltonian pencils λS −H, i.e., pencils where S is a skew-Hamiltonian and H is a Hamiltonian matrix. These pencils occur for example in the theory of continuous time, linear quadratic optimal control problems. We reduce these pencils to canonical and Schur-type forms under structure-preserving transformations, i.e., J-congruen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2001